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native formulations of Mn2(CO) ,n* can, of course, be postu
lated and I, for example, is by no means unlikely. Bridging 

(OC)4Mn Mn(CO)4 

V 
(r 

I 
carbonyls of the type shown have been characterized crystal-
lographically'2 and the structure is analogous to the well-
known (OC)4Mn(M-Cl)2Mn(CO)4. 

Intensity-dependence studies of such reactions are the exact 
counterparts of the studies of the dependence of initial rates 
on initial concentrations of complex that have played a defin
itive role in establishing the existence of reversible fragmen
tation pathways in thermal reactions of metal-metal-bonded 
carbonyls.13 Their essential role in the study of photochemical 
reactions of metal carbonyl clusters is evident. 
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Stereochemical Analysis of the 
Homoserine Dehydrogenase Reaction and Preparation 
of Chiral 4-Deuteriohomoserines 

Sir: 

In the course of analyses of the stereochemical outcome of 
enzymic reactions at the y carbon (C4) of a-amino acids,' we 
have required a source of the physiological amino acid L-
homoserine, stereospecifically deuterated at the prochiral C4 

alcoholic carbon. In this communication we report the prep
aration and the assignment of absolute stereochemistry to 
[4(J?)- and [4(S)-2H]-2(S)-homoserines from synthesis ef
fected by homogeneous aspartokinase/homoserine dehydro
genase—a bifunctional enzyme from E. coli.2 The useful ac
tivity for our purposes is the latter one, providing presumably 
chiral reduction of L-aspartate semialdehyde to L-homoserine 
at the expense of NADH oxidation. In turn this has required 
determination, reported here, of the previously unknown ste
reochemical outcome of this biosynthetic enzymic conversion 
of aldehyde to alcohol. 

Two samples of [4-2H]-L-homoserine were prepared en-
zymically. The first used [4(S)-2H]-NADH3 and L-aspartate 
semialdehyde with 5 units (5 /xmol min - 1 mg - 1 of protein) of 
L-homoserine dehydrogenase4 to yield 5.1 mg of pure [4-
2H]-L-homoserine (sample I) after LC purification (cation 
exchange, Whatman Partisil PXS 10/25 SCX). The second 
sample was obtained with unlabeled NADH and [4-2H]-L-
aspartate semialdehyde in a parallel incubation with analogous 
workup and a yield of 6.2 mg of [4-2H]-L-homoserine (sample 
II). The [4-2H]-L-aspartate semialdehyde was itself generated 
by ozonolysis of 4,5-dideuterio-L-allylglycine, in turn prepared 
by partial hydrogenation of L-propargylglycine with deuterium 
gas using Adams catalyst in 2H2O. The 4,5-dideuterio-L-al
lylglycine required rigorous purification from a small amount 
(5%) of unreacted acetylenic amino acid by LC, or else the 
ozonolysis products (presumably diketones) inhibit the ho
moserine dehydrogenase activity. The ozonolysis was carried 
out in 1 N 2 HC1/ 2 H 2 0 to yield, after enzymic aldehyde re
duction, the anticipated [4-2H]-L-homoserine (sample II). 

That the two monodeuterio-L-homoserine samples did in 
fact have deuterium at the distinct (by virtue of isotopic sub
stitution) diastereotopic methylene loci of carbon 4 was re
vealed by 270-MHz ' H NMR as shown in Figure 1. The a and 
7 hydrogens have similar chemical shifts (a at 3.89 ppm and 
7 at 3.82 ppm). The spectrum of the y hydrogens in nondeu
terated L-homoserine appeared to be a triplet with secondary 
spliting into doublets by the a hydrogen. The coupling con
stants are 6.0 (J-y-p) and 1.0 (Jy-a), respectively. The chemical 
shift of the y hydrogens is 1031.4 Hz. The chemical shift of 
7 hydrogen of monodeuterio-L-homoserine (sample 1) showed 
an upfield shift by 2.1 Hz, to 1029.3 Hz, from nondeuterated 
L-homoserine, and the other monodeuterio-L-homoserine 
(sample II) showed a further upfield shift to 1027.5 Hz. Line 
broadenings of the spectrum of y hydrogens in sample I and 
sample II are due to deuterium coupling. Thus, E. coli ho
moserine dehydrogenase is stereospecific in reduction of the 
trigonal prochiral aldehyde group of L-aspartate semialdehyde. 
It remained then to determine absolute stereochemistry to 
assign upfield and downfield hydrogens in the NMR spectrum 
at 7 (C4) of the chiral [4-2H]-2(S)-homoserine samples. 

After some exploration we chose to degrade L-homoserine 
to 3-hydroxypropionate benzyl ester since it turned out to be 
an acceptable substrate for horse liver alcohol dehydrogenase, 
an enzyme known to remove only the pro R hydrogen from the 
oxidizable carbon of primary alcohols.-^ The degradation is 
shown in Scheme I. In the event we used a chiral [4-3H]-L-
homoserine sample 3 generated from homoserine dehydroge
nase action on [4(S)-3H]-NADH and L-aspartate semial
dehyde, since we could then mix this species with [U-14C]-
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Table I 

expt 

1 
2 
3 
4 

3H/14C 
ratio in 

L-homoserine 

5.44 
5.44 
5.46 
5.46 

3H/14C ratio 
in 3-hydroxy-

propionate benzyl 
ester" 

7.49 
7.34 
7.25 
7.21 

total counts 
of3H,dpm 

5.4 X 104 

9.1 X 104 

5.5 X 104 

1.5 X 104 

degree of 
completion,* 

% 
60 
55 
58 
65 

3H found 
in NADH 

N . D / 
N.D. 
N.D. 
N.D. 

3H/14C ratio 
in recovered 
3-hydroxy-
propionate 

benzyl ester 6'' 

7.50 
7.29 
7.31 
7.25 

" Ratio increase due to loss of '4C upon decarboxylation of a-keto acid 4. * Reaction mixture contained 5 txmol of 3-hydroxypropionate 
benzyl ester, 6 jtmol of NAD in 1 mLof glycine buffer at pH 9.5. Reaction was started by addition of 2 mgof ADH and monitored by NADH 
absorbance at 340 nm. NADH was then purified by a DEAE anion-exchange column. Degree of completion was calculated by the optical 
density of product NADH. c Recovered by addition of cold 3-hydroxypropionate benzyl ester and purified repeatedly by thin layer chroma
tography (silica PF 254, CHCl3).

 d N.D. = not detectable. 

10275 Hz 
SAMPLE Il 

SAMPLE I 

L-HOMOSERINE 

1050 1025 IOOO Hz 

Figure 1. 

L-homoserine (NEN) and follow 3 H/ 1 4 C ratios through the 
degradation scheme. Thus, 5.0 mg of L-homoserine, 3 H/ 1 4 C 
ratio 5.44, was completely oxidized by snake venom L-amino 
acid oxidase in 120 min at pH 7.4 and then the ce-keto acid 4 
was quantitatively decarboxylated by H2O2 as indicated. Since 
3-hydroxypropionate 5 itself turns out not to be an alcohol 
dehydrogenase substrate, we extracted the acid into ethyl ether 
to remove phosphate salts and esterified with freshly distilled 
phenyldiazomethane. The benzyl ester 6 was then purified by 
TLC and subjected to alcohol dehydrogenase action. NADH 
formation was monitored at 340 nm for quantitative assay of 
alcohol oxidation and then separated from unreacted substrate 
and aldehyde product. Both NADH and unreacted 3-hy
droxypropionate benzyl ester 6 were purified by chromatog
raphy and counted for radioactivity. Table I indicates the re
sults of these experiments and reveals no transfer of tritium 
to NADH in four separate experiments showing that the tri
tium atom in the 3-hydroxypropionyl benzyl ester, and so at 
C4 of the starting tritiated L-homoserine, is at the pro S locus. 
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Since no tritium was found in NADH, one might argue al
ternatively that tritium is in the transferable position and that 
there is a large tritium isotope effect upon breaking the C-H 
bond at the C3 alcoholic carbon; then when 60% of the alcohol 
is oxidized, there might be very little tritium transferred to 
NADH (since <5% transfer could be detected, kn/kj would 
have to be >12). To eliminate this possibility, unreacted 3-
hydroxypropionyl benzyl ester was reisolated from the incu
bations and purified, and the 3 H / , 4 C ratio checked. A kn/kj 
of >12 means that, at 60% reaction, a greater than twofold 
increase in the 3 H / , 4 C ratio would be observed. It was found 
that the 3 H/ 1 4 C ratio in the unreacted 3-hydroxypropionyl 
benzyl ester remains unchanged; tritium is indeed in the non
transferable S position of the alcoholic group. Thus, L-'ho-
moserine dehydrogenase transfers the pro S hydrogen from 
C4 of NADH to the si face of bound L-aspartate semialdehyde, 
ending up at the pro S locus in C4 of homoserine. Thus allows 
assignment of sample I of the [4-2H]-L-homoserine (downfield 
C4 H) as [4(S)-2H]-L-homoserine and sample II (upfield C4 
H) as [4(/?)-2H]-L-homoserine (Figure 2). These deuterated 
samples will be useful both as reference standards to compare 
with 4-deuteriohomoserines generated in other enzymic 
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transformations and also as chiral substrate samples to in
vestigate stereochemical specificity of such 7-carbon pro
cessing enzymes as cystathionine 7-synthetase6 and threonine 
synthase.7 Finally, we have determined for the first time the 
stereochemical outcome of catalytic action of homoserine 
dehydrogenase, a central enzyme in biosynthesis of several 
(e.g., methionine, threonine) of the common a-amino acids. 
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Prostaglandin Endoperoxides. 11. 
Mechanism of Amine-Cataly zed Fragmentation 
of !,S-Dioxabicyclofl.l.ljheptane1 

Sir: 

Disproportionation of prostaglandin endoperoxides (e.g., 
1 —»• 2) is a key step in the biosynthesis of D and E prosta
glandins.2 The fragmentation of 2,3-dioxabicyclo[2.2.1]hep
tane (3)3 to levulinaldehyde (4)4 which invariably accompanies 
disproportionation to 3-hydroxycyclopentanone (5) is fasci
nating since natural derivatives of 4 from 1 remain unknown. 
This paradox inspired us to examine carefully the mechanism 
of amine-catalyzed decomposition of 3. We now report that 
amine catalysis of fragmentation (3 —>• 4) and disproportion-
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Figure 1. Correlation of pseudo-first-order rate constant for appearance 
of 4 with concentration of 1,4-diazabicyclo[2.2.2]octane. 
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Figure 2. Temperature dependence of the pseudo-first-order rate constant 
(k) for appearance of 4. 

ation (3 —- 5) are closely related mechanistically. Rate-de
termining cleavage of a bridgehead C-H bond generates a keto 
alkoxide which partitions between retro-aldol cleavage leading 
to 4 and protonation giving 5. 

Decomposition of 3 in benzene solution in the presence of 
catalytic amounts of l,4-diazabicyclo[2.2.2]octane (Dabco) 
was monitored by 'H FT NMR. At 30.0 0C 4 and 5 are formed 
in 77-78 and 22-23% yields, respectively, over a range of 
catalyst concentrations from 4 to 28 mM. Over this range, the 
pseudo-first-order rate of appearance5 of 4 is linearly correlated 
with catalyst concentration (Figure 1). 

Rate constants were determined at various temperatures 
between 24.8 and 45.0 0C with 0.010 M Dabco and a 1.0 M 
initial concentration of 3. These data show an excellent linear 
correlation of In (A:/ [Dabco] T) with 1 / T where k is the ob
served pseudo-first-order rate constant for appearance of 4 
(Figure 2). Activation parameters calculated from the rate 
constants listed in Table I are AH* = 10.6 ± 0.9 kcal mol - 1 

and AS* = - 3 0 ± 3 eu. 
Unimolecular thermal decomposition of 3 in nonpolar sol

vents, which gives 4,5-epoxypentanal almost exclusively, shows 
a considerably higher AH* = 20.7 ± 1.8 kcal mol -1 .10 The 
large negative entropy of activation observed for the catalyzed 
fragmentation is consistent with a highly organized bimolec-
ular transition state involving endoperoxide 3 and a molecule 
of catalyst. 

Three different mechanistic types known for amine catalysis 
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